
CHAPTER 6:

PRIORITY QUEUES (HEAPS)

Although jobs sent to a line printer are generally placed on a queue, this might

not always be the best thing to do. For instance, one job might be particularly

important, so that it might be desirable to allow that job to be run as soon as

the printer is available. Conversely, if, when the printer becomes available,

there are several one-page jobs and one hundred-page job, it might be reasonable

to make the long job go last, even if it is not the last job submitted.

(Unfortunately, most systems do not do this, which can be particularly annoying

at times.)

Similarly, in a multiuser environment, the operating system scheduler must decide

which of several processes to run. Generally a process is only allowed to run for

a fixed period of time. One algorithm uses a queue. Jobs are initially placed at

the end of the queue. The scheduler will repeatedly take the first job on the

queue, run it until either it finishes or its time limit is up, and place it at

the end of the queue if it does not finish. This strategy is generally not

appropriate, because very short jobs will seem to take a long time because of the

wait involved to run. Generally, it is important that short jobs finish as fast

as possible, so these jobs should have preference over jobs that have already

been running. Furthermore, some jobs that are not short are still very important

and should also have preference.

This particular application seems to require a special kind of queue, known as a

priority queue. In this chapter, we will discuss

 Efficient implementation of the priority queue ADT.

 Uses of priority queues.

 Advanced implementations of priority queues.

The data structures we will see are among the most elegant in computer science.

6.1. Model

A priority queue is a data structure that allows at least the following two

operations: insert, which does the obvious thing, and delete_min, which finds,

returns and removes the minimum element in the heap. The insert operation is the

equivalent of enqueue, and delete_min is the priority queue equivalent of the

queue's dequeue operation. The delete_min function also alters its input. Current

thinking in the software engineering community suggests that this is no longer a

good idea. However, we will continue to use this function because of historical

reasons--many programmers expect delete_min to operate this way.

Next ChapterReturn to Table of ContentsPrevious Chapter

页码，1/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.1 Basic model of a priority queue

As with most data structures, it is sometimes possible to add other operations,

but these are extensions and not part of the basic model depicted in Figure 6.1.

Priority queues have many applications besides operating systems. In Chapter 7,

we will see how priority queues are used for external sorting. Priority queues

are also important in the implementation of greedy algorithms, which operate by

repeatedly finding a minimum; we will see specific examples in Chapters 9 and 10.

In this chapter we will see a use of priority queues in discrete event

simulation.

6.2. Simple Implementations

There are several obvious ways to implement a priority queue. We could use a

simple linked list, performing insertions at the front in O(1) and traversing the

list, which requires O(n) time, to delete the minimum. Alternatively, we could

insist that the list be always kept sorted; this makes insertions expensive (O

(n)) and delete_mins cheap (O(1)). The former is probably the better idea of the

two, based on the fact that there are never more delete_mins than insertions.

Another way of implementing priority queues would be to use a binary search tree.

This gives an O(log n) average running time for both operations. This is true in

spite of the fact that although the insertions are random, the deletions are not.

Recall that the only element we ever delete is the minimum. Repeatedly removing a

node that is in the left subtree would seem to hurt the balance of the tree by

making the right subtree heavy. However, the right subtree is random. In the

worst case, where the delete_mins have depleted the left subtree, the right

subtree would have at most twice as many elements as it should. This adds only a

small constant to its expected depth. Notice that the bound can be made into a

worst-case bound by using a balanced tree; this protects one against bad

insertion sequences.

Using a search tree could be overkill because it supports a host of operations

that are not required. The basic data structure we will use will not require

pointers and will support both operations in O(log n) worst-case time. Insertion

will actually take constant time on average, and our implementation will allow

building a heap of n items in linear time, if no deletions intervene. We will

then discuss how to implement heaps to support efficient merging. This additional

operation seems to complicate matters a bit and apparently requires the use of

pointers.

页码，2/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

6.3. Binary Heap

The implementation we will use is known as a binary heap. Its use is so common

for priority queue implementations that when the word heap is used without a

qualifier, it is generally assumed to be referring to this implementation of the

data structure. In this section, we will refer to binary heaps as merely heaps.

Like binary search trees, heaps have two properties, namely, a structure property

and a heap order property. As with AVL trees, an operation on a heap can destroy

one of the properties, so a heap operation must not terminate until all heap

properties are in order. This turns out to be simple to do.

6.3.1. Structure Property

6.3.2. Heap Order Property

6.3.3. Basic Heap Operations

6.3.4. Other Heap Operations

6.3.1. Structure Property

A heap is a binary tree that is completely filled, with the possible exception of

the bottom level, which is filled from left to right. Such a tree is known as a

complete binary tree. Figure 6.2 shows an example.

It is easy to show that a complete binary tree of height h has between 2

h

 and

2

h+1

 - 1 nodes. This implies that the height of a complete binary tree is log

n , which is clearly O(log n).

An important observation is that because a complete binary tree is so regular, it

can be represented in an array and no pointers are necessary. The array in Figure

6.3 corresponds to the heap in Figure 6.2.

页码，3/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.2 A complete binary tree

Figure 6.3 Array implementation of complete binary tree

For any element in array position i, the left child is in position 2i, the right

child is in the cell after the left child (2i + 1), and the parent is in position

i/2 . Thus not only are pointers not required, but the operations required

to traverse the tree are extremely simple and likely to be very fast on most

computers. The only problem with this implementation is that an estimate of the

maximum heap size is required in advance, but typically this is not a problem. In

the figure above, the limit on the heap size is 13 elements. The array has a

position 0; more on this later.

A heap data structure will, then, consist of an array (of whatever type the key

is) and integers representing the maximum 2nd current heap size. Figure 6.4 shows

a typical priority queue declaration. Notice the similarity to the stack

declaration in Figure 3.47. Figure 6.4a creates an empty heap. Line 11 will be

explained later.

Throughout this chapter, we shall draw the heaps as trees, with the implication

that an actual implementation will use simple arrays.

6.3.2. Heap Order Property

The property that allows operations to be performed quickly is the heap order

property. Since we want to be able to find the minimum quickly, it makes sense

that the smallest element should be at the root. If we consider that any subtree

should also be a heap, then any node should be smaller than all of its

descendants.

Applying this logic, we arrive at the heap order property. In a heap, for every

node X, the key in the parent of X is smaller than (or equal to) the key in X,

with the obvious exception of the root (which has no parent).* In Figure 6.5 the

tree on the left is a heap, but the tree on the right is not (the dashed line

shows the violation of heap order). As usual, we will assume that the keys are

integers, although they could be arbitrarily complex.

*Analogously, we can declare a (max) heap, which enables us to efficiently find

and remove the maximum element, by changing the heap order property. Thus, a

priority queue can be used to find either a minimum or a maximum, but this needs

to be decided ahead of time.

By the heap order property, the minimum element can always be found at the root.

Thus, we get the extra operation, find_min, in constant time.

struct heap_struct

页码，4/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

{

/* Maximum # that can fit in the heap */

unsigned int max_heap_size;

/* Current # of elements in the heap */

unsigned int size;

element_type *elements;

};

typedef struct heap_struct *PRIORITY_QUEUE;

Figure 6.4 Declaration for priority queue

PRIORITY_QUEUE

create_pq(unsigned int max_elements)

{

PRIORITY_QUEUE H;

/*1*/ if(max_elements < MIN_PQ_SIZE)

/*2*/ error("Priority queue size is too small");

/*3*/ H = (PRIORITY_QUEUE) malloc (sizeof (struct heap_struct));

/*4*/ if(H == NULL)

/*5*/ fatal_error("Out of space!!!");

/* Allocate the array + one extra for sentinel */

/*6*/ H->elements = (element_type *) malloc

((max_elements+1) * sizeof (element_type));

/*7*/ if(H->elements == NULL)

/*8*/ fatal_error("Out of space!!!");

/*9*/ H->max_heap_size = max_elements;

/*10*/ H->size = 0;

/*11*/ H->elements[0] = MIN_DATA;

/*12*/ return H;

}

页码，5/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.4a

Figure 6.5 Two complete trees (only the left tree is a heap)

6.3.3. Basic Heap Operations

It is easy (both conceptually and practically) to perform the two required

operations. All the work involves ensuring that the heap order property is

maintained.

Insert

Delete_min

Insert

To insert an element x into the heap, we create a hole in the next available

location, since otherwise the tree will not be complete. If x can be placed in

the hole without violating heap order, then we do so and are done. Otherwise we

slide the element that is in the hole's parent node into the hole, thus bubbling

the hole up toward the root. We continue this process until x can be placed in

the hole. Figure 6.6 shows that to insert 14, we create a hole in the next

available heap location. Inserting 14 in the hole would violate the heap order

property, so 31 is slid down into the hole. This strategy is continued in Figure

6.7 until the correct location for 14 is found.

This general strategy is known as a percolate up; the new element is percolated

up the heap until the correct location is found. Insertion is easily implemented

with the code shown in Figure 6.8.

We could have implemented the percolation in the insert routine by performing

repeated swaps until the correct order was established, but a swap requires three

assignment statements. If an element is percolated up d levels, the number of

assignments performed by the swaps would be 3d. Our method uses d + 1

assignments.

页码，6/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.6 Attempt to insert 14: creating the hole, and bubbling the hole up

Figure 6.7 The remaining two steps to insert 14 in previous heap

/* H->element[0] is a sentinel */

void

insert(element_type x, PRIORITY_QUEUE H)

{

unsigned int i;

/*1*/ if(is_full(H))

/*2*/ error("Priority queue is full");

else

{

/*3*/ i = ++H->size;

/*4*/ while(H->elements[i/2] > x)

{

/*5*/ H->elements[i] = H->elements[i/2];

/*6*/ i /= 2;

}

页码，7/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/*7*/ H->elements[i] = x;

}

}

Figure 6.8 Procedure to insert into a binary heap

If the element to be inserted is the new minimum, it will be pushed all the way

to the top. At some point, i will be 1 and we will want to break out of the while

loop. We could do this with an explicit test, but we have chosen to put a very

small value in position 0 in order to make the while loop terminate. This value

must be guaranteed to be smaller than (or equal to) any element in the heap; it

is known as a sentinel. This idea is similar to the use of header nodes in linked

lists. By adding a dummy piece of information, we avoid a test that is executed

once per loop iteration, thus saving some time.

The time to do the insertion could be as much as O (log n), if the element to be

inserted is the new minimum and is percolated all the way to the root. On

average, the percolation terminates early; it has been shown that 2.607

comparisons are required on average to perform an insert, so the average insert

moves an element up 1.607 levels.

Delete_min

Delete_mins are handled in a similar manner as insertions. Finding the minimum is

easy; the hard part is removing it. When the minimum is removed, a hole is

created at the root. Since the heap now becomes one smaller, it follows that the

last element x in the heap must move somewhere in the heap. If x can be placed in

the hole, then we are done. This is unlikely, so we slide the smaller of the

hole's children into the hole, thus pushing the hole down one level. We repeat

this step until x can be placed in the hole. Thus, our action is to place x in

its correct spot along a path from the root containing minimum children.

In Figure 6.9 the left figure shows a heap prior to the delete_min. After 13 is

removed, we must now try to place 31 in the heap. 31 cannot be placed in the

hole, because this would violate heap order. Thus, we place the smaller child

(14) in the hole, sliding the hole down one level (see Fig. 6.10). We repeat this

again, placing 19 into the hole and creating a new hole one level deeper. We then

place 26 in the hole and create a new hole on the bottom level. Finally, we are

able to place 31 in the hole (Fig. 6.11). This general strategy is known as a

percolate down. We use the same technique as in the insert routine to avoid the

use of swaps in this routine.

页码，8/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.9 Creation of the hole at the root

Figure 6.10 Next two steps in delete_min

Figure 6.11 Last two steps in delete_min

A frequent implementation error in heaps occurs when there are an even number of

elements in the heap, and the one node that has only one child is encountered.

You must make sure not to assume that there are always two children, so this

usually involves an extra test. In the code, depicted in Figure 6.12, we've done

this test at line 8. One extremely tricky solution is always to ensure that your

algorithm thinks every node has two children. Do this by placing a sentinel, of

value higher than any in the heap, at the spot after the heap ends, at the start

of each percolate down when the heap size is even. You should think very

carefully before attempting this, and you must put in a prominent comment if you

do use this technique.

element_type

delete_min(PRIORITY_QUEUE H)

页码，9/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

{

unsigned int i, child;

element_type min_element, last_element;

/*1*/ if(is_empty(H))

{

/*2*/ error("Priority queue is empty");

/*3*/ return H->elements[0];

}

/*4*/ min_element = H->elements[1];

/*5*/ last_element = H->elements[H->size--];

/*6*/ for(i=1; i*2 <= H->size; i=child)

{

/* find smaller child */

/*7*/ child = i*2;

/*8*/ if((child != H->size) &&

(H->elements[child+1] < H->elements [child]))

/*9*/ child++;

/* percolate one level */

/*10*/ if(last_element > H->elements[child])

/*11*/ H->elements[i] = H->elements[child];

else

/*12*/ break;

}

/*13*/ H->elements[i] = last_element;

/*14*/ return min_element;

}

Figure 6.12 Function to perform delete_min in a binary heap

Although this eliminates the need to test for the presence of a right child, you

cannot eliminate the requirement that you test when you reach the bottom because

页码，10/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

this would require a sentinel for every leaf.

The worst-case running time for this operation is O(log n). On average, the

element that is placed at the root is percolated almost to the bottom of the heap

(which is the level it came from), so the average running time is O (log n).

6.3.4. Other Heap Operations

Notice that although finding the minimum can be performed in constant time, a

heap designed to find the minimum element (also known as a (min) heap) is of no

help whatsoever in finding the maximum element. In fact, a heap has very little

ordering information, so there is no way to find any particular key without a

linear scan through the entire heap. To see this, consider the large heap

structure (the elements are not shown) in Figure 6.13, where we see that the only

information known about the maximum element is that it is at one of the leaves.

Half the elements, though, are contained in leaves, so this is practically

useless information. For this reason, if it is important to know where elements

are, some other data structure, such as a hash table, must be used in addition to

the heap. (Recall that the model does not allow looking inside the heap.)

If we assume that the position of every element is known by some other method,

then several other operations become cheap. The three operations below all run in

logarithmic worst-case time.

Decrease_key

Increase_key

Delete

Build_heap

Decrease_key

The decrease_key(x, , H) operation lowers the value of the key at position x

by a positive amount . Since this might violate the heap order, it must be

fixed by a percolate up. This operation could be useful to system administrators:

they can make their programs run with highest priority

页码，11/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.13 A very large complete binary tree

Increase_key

The increase_key(x, , H) operation increases the value of the key at position

x by a positive amount . This is done with a percolate down. Many schedulers

automatically drop the priority of a process that is consuming excessive CPU
time.

Delete

The delete(x, H) operation removes the node at position x from the heap. This is

done by first performing decrease_key(x, , H) and then performing delete_min

(H). When a process is terminated by a user (instead of finishing normally), it

must be removed from the priority queue.

Build_heap

The build_heap(H) operation takes as input n keys and places them into an empty

heap. Obviously, this can be done with n successive inserts. Since each insert

will take O(1) average and O(log n) worst-case time, the total running time of

this algorithm would be O(n) average but O(n log n) worst-case. Since this is a

special instruction and there are no other operations intervening, and we already

know that the instruction can be performed in linear average time, it is

reasonable to expect that with reasonable care a linear time bound can be

guaranteed.

The general algorithm is to place the n keys into the tree in any order,

maintaining the structure property. Then, if percolate_down(i) percolates down

from node i, perform the algorithm in Figure 6.14 to create a heap-ordered tree.

The first tree in Figure 6.15 is the unordered tree. The seven remaining trees in

Figures 6.15 through 6.18 show the result of each of the seven percolate downs.

Each dashed line corresponds to two comparisons: one to find the smaller child

页码，12/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

and one to compare the smaller child with the node. Notice that there are only 10

dashed lines in the entire algorithm (there could have been an 11th -- where?)

corresponding to 20 comparisons.

for(i=n/2; i>0; i--)

percolate_down(i);

Figure 6.14 Sketch of build_heap

Figure 6.15 Left: initial heap; right: after percolate_down(7)

Figure 6.16 Left: after percolate_down(6); right: after percolate_down(5)

Figure 6.17 Left: after percolate_down(4); right: after percolate_down(3)

页码，13/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.18 Left: after percolate_down(2); right: after percolate_down(1)

To bound the running time of build_heap, we must bound the number of dashed

lines. This can be done by computing the sum of the heights of all the nodes in

the heap, which is the maximum number of dashed lines. What we would like to show

is that this sum is O(n).

THEOREM 6.1.

For the perfect binary tree of height h containing 2

h+1

- 1 nodes, the sum of the

heights of the nodes is 2

h+1

 - 1 - (h + 1).

PROOF:

It is easy to see that this tree consists of 1 node at height h, 2 nodes at

height h - 1, 2

2

nodes at height h - 2, and in general 2

i

nodes at height h - i.

The sum of the heights of all the nodes is then

= h +2(h - 1) + 4(h - 2) + 8(h - 3) + 16(h - 4) +. . .+ 2

h

-1

(1)

(6.1)

Multiplying by 2 gives the equation

2S = 2h + 4(h - 1) + 8(h - 2) + 16(h - 3) + . . . + 2

h

(1)

(6.2)

We subtract these two equations and obtain Equation (6.3). We find that certain

terms almost cancel. For instance, we have 2h - 2(h - 1) = 2, 4(h - 1) - 4(h - 2)

= 4, and so on. The last term in Equation (6.2), 2

h

, does not appear in Equation

(6.1); thus, it appears in Equation (6.3). The first term in Equation (6.1), h,

does not appear in equation (6.2); thus, -h appears in Equation (6.3).

We obtain

S = - h + 2 + 4 + 8 + . . . + 2

h-1

+ 2

h

= (2

h+1

- 1) - (h + 1)

页码，14/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

(6.3)

which proves the theorem.

A complete tree is not a perfect binary tree, but the result we have obtained is

an upper bound on the the sum of the heights of the nodes in a complete tree.

Since a complete tree has between 2

h

and 2

h+1

nodes, this theorem implies that

this sum is O(n), where n is the number of nodes.

Although the result we have obtained is sufficient to show that build_heap is

linear, the bound on the sum of the heights is not as strong as possible. For a

complete tree with n = 2

h

nodes, the bound we have obtained is roughly 2n. The

sum of the heights can be shown by induction to be n - b(n), where b(n) is the

number of 1s in the binary representation of n.

6.4. Applications of Priority Queues

We have already mentioned how priority queues are used in operating systems

design. In Chapter 9, we will see how priority queues are used to implement

several graph algorithms efficiently. Here we will show how to use priority

queues to obtain solutions to two problems.

6.4.1. The Selection Problem

6.4.2. Event Simulation

6.4.1. The Selection Problem

The first problem we will examine is the selection problem from Chapter 1. Recall

that the input is a list of n elements, which can be totally ordered, and an

integer k. The selection problem is to find the kth largest element.

Two algorithms were given in Chapter 1, but neither is very efficient. The first

algorithm, which we shall call Algorithm 1A, is to read the elements into an

array and sort them, returning the appropriate element. Assuming a simple sorting

algorithm, the running time is O(n

2

). The alternative algorithm, 1B, is to read k

elements into an array and sort them. The smallest of these is in the kth

position. We process the remaining elements one by one. As an element arrives, it

is compared with kth element in the array. If it is larger, then the kth element

is removed, and the new element is placed in the correct place among the

remaining k - 1 elements. When the algorithm ends, the element in the kth

position is the answer. The running time is O(n k) (why?). If k = n/2

, then both algorithms are O(n

2

). Notice that for any k, we can solve the

symmetric problem of finding the (n - k + 1)th smallest element, so k = n/2

 is really the hardest case for these algorithms. This also happens to be the

most interesting case, since this value of k is known as the median.

页码，15/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

We give two algorithms here, both of which run in O(n log n) in the extreme case

of k = n/2 , which is a distinct improvement.

Algorithm 6A

Algorithm 6B

Algorithm 6A

For simplicity, we assume that we are interested in finding the kth smallest

element. The algorithm is simple. We read the n elements into an array. We then

apply the build_heap algorithm to this array. Finally, we'll perform k delete_min

operations. The last element extracted from the heap is our answer. It should be

clear that by changing the heap order property, we could solve the original

problem of finding the kth largest element.

The correctness of the algorithm should be clear. The worst-case timing is O(n)

to construct the heap, if build_heap is used, and O(log n) for each delete_min.

Since there are k delete_mins, we obtain a total running time of O(n + k log n).

If k = O(n/log n), then the running time is dominated by the build_heap operation

and is O(n). For larger values of k, the running time is O(k log n). If k =

n/2 , then the running time is (n log n).

Notice that if we run this program for k = n and record the values as they leave

the heap, we will have essentially sorted the input file in O(n log n) time. In

Chapter 7, we will refine this idea to obtain a fast sorting algorithm known as

heapsort.

Algorithm 6B

For the second algorithm, we return to the original problem and find the kth

largest element. We use the idea from Algorithm 1B. At any point in time we will

maintain a set S of the k largest elements. After the first k elements are read,

when a new element is read, it is compared with the kth largest element, which we

denote by S

k

. Notice that S

k

 is the smallest element in S. If the new element is

larger, then it replaces S

k

 in S. S will then have a new smallest element, which

may or may not be the newly added element. At the end of the input, we find the

smallest element in S and return it as the answer.

This is essentially the same algorithm described in Chapter 1. Here, however, we

will use a heap to implement S. The first k elements are placed into the heap in

total time O(k) with a call to build_heap. The time to process each of the

remaining elements is O(1), to test if the element goes into S, plus O(log k), to

delete S

k

 and insert the new element if this is necessary. Thus, the total time

is O(k + (n - k) log k) = O (n log k) . This algorithm also gives a bound of

(n log n) for finding the median.

In Chapter 7, we will see how to solve this problem in O(n) average time. In

Chapter 10, we will see an elegant, albeit impractical, algorithm to solve this

页码，16/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

problem in O(n) worst-case time.

6.4.2. Event Simulation

In Section 3.4.3, we described an important queuing problem. Recall that we have

a system, such as a bank, where customers arrive and wait on a line until one of

k tellers is available. Customer arrival is governed by a probability

distribution function, as is the service time (the amount of time to be served

once a teller is available). We are interested in statistics such as how long on

average a customer has to wait or how long the line might be.

With certain probability distributions and values of k, these answers can be

computed exactly. However, as k gets larger, the analysis becomes considerably

more difficult, so it is appealing to use a computer to simulate the operation of

the bank. In this way, the bank officers can determine how many tellers are

needed to ensure reasonably smooth service.

A simulation consists of processing events. The two events here are (a) a

customer arriving and (b) a customer departing, thus freeing up a teller.

We can use the probability functions to generate an input stream consisting of

ordered pairs of arrival time and service time for each customer, sorted by

arrival time. We do not need to use the exact time of day. Rather, we can use a

quantum unit, which we will refer to as a tick.

One way to do this simulation is to start a simulation clock at zero ticks. We

then advance the clock one tick at a time, checking to see if there is an event.

If there is, then we process the event(s) and compile statistics. When there are

no customers left in the input stream and all the tellers are free, then the

simulation is over.

The problem with this simulation strategy is that its running time does not

depend on the number of customers or events (there are two events per customer),

but instead depends on the number of ticks, which is not really part of the

input. To see why this is important, suppose we changed the clock units to

milliticks and multiplied all the times in the input by 1,000. The result would

be that the simulation would take 1,000 times longer!

The key to avoiding this problem is to advance the clock to the next event time

at each stage. This is conceptually easy to do. At any point, the next event that

can occur is either (a) the next customer in the input file arrives, or (b) one

of the customers at a teller leaves. Since all the times when the events will

happen are available, we just need to find the event that happens nearest in the

future and process that event.

If the event is a departure, processing includes gathering statistics for the

departing customer and checking the line (queue) to see whether there is another

customer waiting. If so, we add that customer, process whatever statistics are

required, compute the time when that customer will leave, and add that departure

to the set of events waiting to happen.

If the event is an arrival, we check for an available teller. If there is none,

页码，17/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

we place the arrival on the line (queue); otherwise we give the customer a

teller, compute the customer's departure time, and add the departure to the set

of events waiting to happen.

The waiting line for customers can be implemented as a queue. Since we need to

find the event nearest in the future, it is appropriate that the set of

departures waiting to happen be organized in a priority queue. The next event is

thus the next arrival or next departure (whichever is sooner); both are easily

available.

It is then straightforward, although possibly time-consuming, to write the

simulation routines. If there are C customers (and thus 2C events) and k tellers,

then the running time of the simulation would be O(C log(k + 1))* because

computing and processing each event takes O(logH), where H = k + 1 is the size of

the heap.

*

 We use O(C log(k + 1)) instead of O(C log k) to avoid confusion for the k = 1

case.

6.5. d-Heaps

Binary heaps are so simple that they are almost always used when priority queues

are needed. A simple generalization is a d-heap, which is exactly like a binary

heap except that all nodes have d children (thus, a binary heap is a 2-heap).

Figure 6.19 shows a 3-heap.

Notice that a d-heap is much more shallow than a binary heap, improving the

running time of inserts to O(log

d

n). However, the delete_min operation is more

expensive, because even though the tree is shallower, the minimum of d children

must be found, which takes d - 1 comparisons using a standard algorithm. This

raises the time for this operation to O(d log

d

n). If d is a constant, both

running times are, of course, O(log n). Furthermore, although an array can still

be used, the multiplications and divisions to find children and parents are now

by d, which seriously increases the running time, because we can no longer

implement division by a bit shift. d-heaps are interesting in theory, because

there are many algorithms where the number of insertions is much greater than the

number of delete_mins (and thus a theoretical speedup is possible). They are also

of interest when the priority queue is too large to fit entirely in main memory.

In this case, a d-heap can be advantageous in much the same way as B-trees.

The most glaring weakness of the heap implementation, aside from the inability to

perform finds is that combining two heaps into one is a hard operation. This

extra operation is known as a merge. There are quite a few ways of implementing

heaps so that the running time of a merge is O(log n). We will now discuss three

data structures, of various complexity, that support the merge operation

efficiently. We will defer any complicated analysis until Chapter 11.

页码，18/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.19 A d-heap

6.6. Leftist Heaps

It seems difficult to design a data structure that efficiently supports merging

(that is, processes a merge in o(n) time) and uses only an array, as in a binary

heap. The reason for this is that merging would seem to require copying one array

into another which would take (n) time for equal-sized heaps. For this

reason, all the advanced data structures that support efficient merging require

the use of pointers. In practice, we can expect that this will make all the other

operations slower; pointer manipulation is generally more time-consuming than

multiplication and division by two.

Like a binary heap, a leftist heap has both a structural property and an ordering

property. Indeed, a leftist heap, like virtually all heaps used, has the same

heap order property we have already seen. Furthermore, a leftist heap is also a

binary tree. The only difference between a leftist heap and a binary heap is that

leftist heaps are not perfectly balanced, but actually attempt to be very

unbalanced.

6.6.1. Leftist Heap Property

6.6.2. Leftist Heap Operations

6.6.1. Leftist Heap Property

We define the null path length, npl(X) of any node X to be the length of the

shortest path from X to a node without two children. Thus, the npl of a node with

zero or one child is 0, while npl(NULL) = -1. In the tree in Figure 6.20, the

null path lengths are indicated inside the tree nodes.

Notice that the null path length of any node is 1 more than the minimum of the

null path lengths of its children. This applies to nodes with less than two

children because the null path length of is -1.

The leftist heap property is that for every node X in the heap, the null path

length of the left child is at least as large as that of the right child. This

property is satisfied by only one of the trees in Figure 6.20, namely, the tree

on the left. This property actually goes out of its way to ensure that the tree

is unbalanced, because it clearly biases the tree to get deep towards the left.

页码，19/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Indeed, a tree consisting of a long path of left nodes is possible (and actually

preferable to facilitate merging); hence the name leftist heap.

Figure 6.20 Null path lengths for two trees; only the left tree is leftist

Because leftist heaps tend to have deep left paths, it follows that the right

path ought to be short. Indeed, the right path down a leftist heap is as short as

any in the heap. Otherwise, there would be a path that goes through some node X

and takes the left child. Then X would violate the leftist property.

THEOREM 6.2.

A leftist tree with r nodes on the right path must have at least 2

r

 - 1 nodes.

PROOF:

The proof is by induction. If r = 1, there must be at least one tree node.

Otherwise, suppose that the theorem is true for 1, 2, . . ., r. Consider a

leftist tree with r + 1 nodes on the right path. Then the root has a right

subtree with r nodes on the right path, and a left subtree with at least r nodes

on the right path (otherwise it would not be leftist). Applying the inductive

hypothesis to these subtrees yields a minimum of 2

r

 - 1 nodes in each subtree.

This plus the root gives at least 2

r+1

 - 1 nodes in the tree, proving the

theorem.

From this theorem, it follows immediately that a leftist tree of n nodes has a

right path containing at most log(n + 1) nodes. The general idea for the
leftist heap operations is to perform all the work on the right path, which is

guaranteed to be short. The only tricky part is that performing inserts and

merges on the right path could destroy the leftist heap property. It turns out to

be extremely easy to restore the property.

6.6.2. Leftist Heap Operations

The fundamental operation on leftist heaps is merging. Notice that insertion is

merely a special case of merging, since we may view an insertion as a merge of a

one-node heap with a larger heap. We will first give a simple recursive solution

and then show how this might be done nonrecursively. Our input is the two leftist

页码，20/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

heaps, H

1

 and H

2

, in Figure 6.21. You should check that these heaps really are

leftist. Notice that the smallest elements are at the roots. In addition to space

for the data and left and right pointers, each cell will have an entry that

indicates the null path length.

If either of the two heaps is empty, then we can return the other heap.

Otherwise, to merge the two heaps, we compare their roots. First, we recursively

merge the heap with the larger root with the right subheap of the heap with the

smaller root. In our example, this means we recursively merge H

2

 with the subheap

of H

1

 rooted at 8, obtaining the heap in Figure 6.22.

Since this tree is formed recursively, and we have not yet finished the

description of the algorithm, we cannot at this point show how this heap was

obtained. However, it is reasonable to assume that the resulting tree is a

leftist heap, because it was obtained via a recursive step. This is much like the

inductive hypothesis in a proof by induction. Since we can handle the base case

(which occurs when one tree is empty), we can assume that the recursive step

works as long as we can finish the merge; this is rule 3 of recursion, which we

discussed in Chapter 1. We now make this new heap the right child of the root of

H

1

 (see Fig. 6.23).

Figure 6.21 Two leftist heaps H

1

 and H2

页码，21/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.22 Result of merging H

2

 with H1's right subheap

Figure 6.23 Result of attaching leftist heap of previous figure as H

1

's right child

Although the resulting heap satisfies the heap order property, it is not leftist because the left

subtree of the root has a null path length of 1 while the right subtree has null path length of

2. Thus, the leftist property is violated at the root. However, it is easy to see that the

remainder of the tree must be leftist. The right subtree of the root is leftist, because of the

recursive step. The left subtree of the root has not been changed, so it too must still be

leftist. Thus, we only need to fix the root. We can make the entire tree leftist by merely

swapping the root's left and right children (

Fig. 6.24) and updating the null path length -- the

new null path length is 1 plus the null path length of the new right child -- completing the

merge. Notice that if the null path length is not updated, then all null path lengths will be 0,

and the heap will not be leftist but merely random. In this case, the algorithm will work, but

the time bound we will claim will no longer be valid.

The description of the algorithm translates directly into code. The type definition (Fig. 6.25)

is the same as the binary tree, except that it is augmented with the npl (null path length)

field. We have seen in Chapter 4 that when an element is inserted into an empty binary tree, the

pointer to the root will need to change. The easiest way to implement this is to have the

insertion routine return a pointer to the new tree. Unfortunately, this will make the leftist

heap insert incompatible with the binary heap insert (which does not return anything). The last

line in Figure 6.25 represents one way out of this quandary. The leftist heap insertion routine

which returns the new tree will be called insert1; the insert macro will make an insertion

compatible with binary heaps. Using macros this way may not be the best or safest course, but the

alternative, declaring a PRIORITY QUEUE as a pointer to a tree_ptr will flood the code with extra

asterisks.

Because insert is a macro and is textually substituted by the preprocessor, any routine that

calls insert must be able to see the macro definition. Figure 6.25 would typically be a header

file, so placing the macro declaration there is the only reasonable course. As we will see later.

delete_min also needs to be written as a macro.

页码，22/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.24 Result of swapping children of H

1

's root

typedef struct tree_node

*

tree_ptr;

struct tree_node

{

element_type element;

tree_ptr left;

tree_ptr right;

unsigned int npl;

};

typedef tree_ptr PRIORITY_QUEUE;

#define insert(x, H) (H = insert1((x), H))

Figure 6.25 Leftist heap type declarations

The routine to merge (

Fig. 6.26) is a driver designed to remove special cases and ensure that H

1

has the smaller root. The actual merging is performed in merge1 (Fig. 6.27).

The time to perform the merge is proportional to the sum of the length of the right paths,

because constant work is performed at each node visited during the recursive calls. Thus we

obtain an O(log n) time bound to merge two leftist heaps. We can also perform this operation

nonrecursively by essentially performing two passes. In the first pass, we create a new tree by

merging the right paths of both heaps. To do this, we arrange the nodes on the right paths of H

1

and H

2

 in sorted order, keeping their respective left children. In our example, the new right

path is 3, 6, 7, 8, 18 and the resulting tree is shown in Figure 6.28. A second pass is made up

the heap, and child swaps are performed at nodes that violate the leftist heap property. In

Figure 6.28, there is a swap at nodes 7 and 3, and the same tree as before is obtained. The

nonrecursive version is simpler to visualize but harder to code. We leave it to the reader to

show that the recursive and nonrecursive procedures do the same thing.

PRIORITY_QUEUE

页码，23/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

merge(PRIORITY_QUEUE H1, PRIORITY_QUEUE H2)

{

/*1*/ if(H1 == NULL)

/*2*/ return H2;

/*3*/ if(H2 == NULL)

/*4*/ return H1;

/*5*/ if(H1->element < H2->element)

/*6*/ return merge1(H1, H2);

else

/*7*/ return merge1(H2, H1);

}

Figure 6.26 Driving routine for merging leftist heaps

/* For merge1, H1 has smaller root, H1 and H2 are not NULL */

PRIORITY_QUEUE

merge1(PRIORITY_QUEUE H1, PRIORITY_QUEUE H2)

{

/*1*/ if(H1->left == NULL) /* single node */

/*2*/ H1->left = H2; /* H1->right is already NULL,

H1->npl is already 0*/

else

{

/*3*/ H1->right = merge(H1->right, H2);

/*4*/ if(H1->left->npl < H1->right->npl)

/*5*/ swap_children(H1);

/*6*/ H1->npl = H1->right->npl + 1;

}

/*7*/ return H1;

}

Figure 6.27 Actual routine to merge leftist heaps

页码，24/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.28 Result of merging right paths of H

1

 and H2

As mentioned above, we can carry out insertions by making the item to be inserted a one-node heap

and performing a merge. To perform a delete_min, we merely destroy the root, creating two heaps,

which can then be merged. Thus, the time to perform a delete_min is O(logn). These two routines

are coded in Figure 6.29 and Figure 6.30. Delete_min can be written as a macro that calls

delete_min1 and find_min. This is left as an exercise to the reader.

The call to free on line 4 of Figure 6.30 might look chancy, but it is actually correct. The call

does not destroy the variable H; rather, it indicates that the cell to which it points can be

used. That cell is placed on the freelist. H, which is a pointer, is then set to point somewhere

else by line 5. Also, notice how the headings for these routines can be made identical to those

for the binary heap implementation. Either priority queue package could be used, and the

implementation would be completely transparent to the calling routines.

Finally, we can build a leftist heap in O(n) time by building a binary heap (obviously using a

pointer implementation). Although a binary heap is clearly leftist, this is not necessarily the

best solution, because the heap we obtain is the worst possible leftist heap. Furthermore,

traversing the tree in reverse-level order is not as easy with pointers. The build_heap effect

can be obtained by recursively building the left and right subtrees and then percolating the root

down. The exercises contain an alternative solution.

PRIORITY_QUEUE

insert1(element_type x, PRIORITY_QUEUE H)

{

tree_ptr single_node;

/*1*/ single_node = (tree_ptr) malloc(sizeof (struct tree_node));

/*2*/ if(single_node == NULL)

/*3*/ fatal_error("Out of space!!!");

else

{

/*4*/ single_node->element = x; single_node->npl = 0;

页码，25/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/*5*/ single_node->left = single_node->right = NULL;

/*6*/ H = merge(single_node, H);

}

/*7*/ return H;

}

Figure 6.29 Insertion routine for leftist heaps

/* Delete_min1 returns the new tree; */

/* to get the minimum use find_min */

/* This is for convenience. */

PRIORITY_QUEUE

delete_min1(PRIORITY_QUEUE H)

{

PRIORITY_QUEUE left_heap, right_heap;

/*1*/ left_heap = H->left;

/*2*/ right_heap = H->right;

/*3*/ free(H);

/*4*/ return merge(left_heap, right_heap);

}

Figure 6.30 Delete_min routine for leftist heaps

6.7. Skew Heaps

A skew heap is a self-adjusting version of a leftist heap that is incredibly simple to implement.

The relationship of skew heaps to leftist heaps is analogous to the relation between splay trees

and AVL trees. Skew heaps are binary trees with heap order, but there is no structural
constraint on these trees. Unlike leftist heaps, no information is maintained about the null path

length of any node. The right path of a skew heap can be arbitrarily long at any time, so the

worst-case running time of all operations is O(n). However, as with splay trees, it can be shown

(see Chapter 11) that for any m consecutive operations, the total worst-case running time is O(m

log n). Thus, skew heaps have O(log n) amortized cost per operation.

As with leftist heaps, the fundamental operation on skew heaps is merging. The merge routine is

once again recursive, and we perform the exact same operations as before, with one exception. The

difference is that for leftist heaps, we check to see whether the left and right children satisfy

the leftist heap order property and swap them if they do not. For skew heaps, the swap is

unconditional -- we always do it, with the one exception that the smallest of all the nodes on

the right paths does not have its children swapped. This one exception is what happens in the

natural recursive implementation, so it is not really a special case at all. Furthermore, it is

not necessary to prove the bounds, but since this node is guaranteed not to have a right child,

it would be silly to perform the swap and give it one. (In our example, there are no children of

this node, so we do not worry about it.) Again, suppose our input is the same two heaps as

before, Figure 6.31.

页码，26/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

If we recursively merge H

2

 with the subheap of H

1

 rooted at 8, we will get the heap in Figure

6.32.

Again, this is done recursively, so by the third rule of recursion (Section 1.3) we need not

worry about how it was obtained. This heap happens to be leftist, but there is no guarantee that

this is always the case. We make this heap the new left child of H

1

 and the old left child of H

1

becomes the new right child (see Fig. 6.33).

Figure 6.31 Two skew heaps H

1

 and H2

Figure 6.32 Result of merging H

2

 with H1's right subheap

页码，27/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.33 Result of merging skew heaps H

1

 and H2

The entire tree is leftist, but it is easy to see that that is not always true: Inserting 15 into

this new heap would destroy the leftist property.

We can perform all operations nonrecursively, as with leftist heaps, by merging the right paths

and swapping left and right children for every node on the right path, with the exception of the

last. After a few examples, it becomes clear that since all but the last node on the right path

have their children swapped, the net effect is that this becomes the new left path (see the

preceding example to convince yourself). This makes it very easy to merge two skew heaps

visually.

The implementation of skew heaps is left as a (trivial) exercise. Skew heaps have the advantage

that no extra space is required to maintain path lengths and no tests are required to determine

when to swap children. It is an open problem to determine precisely the expected right path

length of both leftist and skew heaps (the latter is undoubtedly more difficult). Such a

comparison would make it easier to determine whether the slight loss of balance information is

compensated by the lack of testing.

6.8. Binomial Queues

Although both leftist and skew heaps support merging, insertion, and delete_min all effectively

in O(log n) time per operation, there is room for improvement because we know that binary heaps

support insertion in constant average time per operation. Binomial queues support all three

operations in O(log n) worst-case time per operation, but insertions take constant time on

average.

< P>

6.8.1. Binomial Queue Structure

Binomial queues differ from all the priority queue implementations that we have seen in that a

binomial queue is not a heap-ordered tree but rather a collection of heap-ordered trees, known as

a forest. Each of the heap-ordered trees are of a constrained form known as a binomial tree (the

页码，28/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

name will be obvious later). There is at most one binomial tree of every height. A binomial tree

of height 0 is a one-node tree; a binomial tree, B

k

, of height k is formed by attaching a

binomial tree, B

k-1

, to the root of another binomial tree, B

k-1

. Figure 6.34 shows binomial trees

B

0

, B

1

, B

2

, B

3

, and B

4

.

It is probably obvious from the diagram that a binomial tree, B

k

consists of a root with children

B

0

, B

1

, . . ., B

k-1

. Binomial trees of height k have exactly 2

k

nodes, and the number of nodes at

depth d is the binomial coefficient . If we impose heap order on the binomial trees and allow

at most one binomial tree of any height, we can uniquely represent a priority queue of any size

by a collection of binomial trees. For instance, a priority queue of size 13 could be represented

by the forest B

3

, B

2

, B

0

. We might write this representation as 1101, which not only represents

13 in binary but also represents the fact that B

3

, B

2

 and B

0

 are present in the representation

and B

1

 is not.

As an example, a priority queue of six elements could be represented as in Figure 6.35.

Figure 6.34 Binomial trees B

0

, B1, B2, B3, and B4

Figure 6.35 Binomial queue H

1

 with six elements

6.8.2. Binomial Queue Operations

页码，29/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

The minimum element can then be found by scanning the roots of all the trees. Since there are at

most log n different trees, the minimum can be found in O(log n) time. Alternatively, we can

maintain knowledge of the minimum and perform the operation in O(1) time, if we remember to

update the minimum when it changes during other operations.

Merging two binomial queues is a conceptually easy operation, which we will describe by example.

Consider the two binomial queues, H

1

 and H

2

 with six and seven elements, respectively, pictured

in Figure 6.36.

The merge is performed by essentially adding the two queues together. Let H

3

 be the new binomial

queue. Since H

1

 has no binomial tree of height 0 and H

2

 does, we can just use the binomial tree

of height 0 in H

2

 as part of H

3

. Next, we add binomial trees of height 1. Since both H

1

 and H

2

have binomial trees of height 1, we merge them by making the larger root a subtree of the

smaller, creating a binomial tree of height 2, shown in Figure 6.37. Thus, H

3

 will not have a

binomial tree of height 1. There are now three binomial trees of height 2, namely, the original

trees of H

1

 and H

2

 plus the tree formed by the previous step. We keep one binomial tree of height

2 in H

3

 and merge the other two, creating a binomial tree of height 3. Since H

1

 and H

2

 have no

trees of height 3, this tree becomes part of H

3

and we are finished. The resulting binomial queue

is shown in Figure 6.38.

Figure 6.36 Two binomial queues H

1

 and H2

Figure 6.37 Merge of the two B

1

 trees in H1 and H2

页码，30/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.38 Binomial queue H

3

: the result of merging H1 and H2

Since merging two binomial trees takes constant time with almost any reasonable implementation,

and there are O(log n) binomial trees, the merge takes O(log n) time in the worst case. To make

this operation efficient, we need to keep the trees in the binomial queue sorted by height, which

is certainly a simple thing to do.

Insertion is just a special case of merging, since we merely create a one-node tree and perform a

merge. The worst-case time of this operation is likewise O(log n). More precisely, if the

priority queue into which the element is being inserted has the property that the smallest

nonexistent binomial tree is B

i

, the running time is proportional to i + 1. For example, H

3

 (Fig.

6.38) is missing a binomial tree of height 1, so the insertion will terminate in two steps. Since

each tree in a binomial queue is present with probability , it follows that we expect an

insertion to terminate in two steps, so the average time is constant. Furthermore, an easy

analysis will show that performing n inserts on an initially empty binomial queue will take O(n)

worst-case time. Indeed, it is possible to do this operation using only n - 1 comparisons; we

leave this as an exercise.

As an example, we show in Figures 6.39 through 6.45 the binomial queues that are formed by

inserting 1 through 7 in order. Inserting 4 shows off a bad case. We merge 4 with B

0

, obtaining a

new tree of height 1. We then merge this tree with B

1

, obtaining a tree of height 2, which is the

new priority queue. We count this as three steps (two tree merges plus the stopping case). The

next insertion after 7 is inserted is another bad case and would require three tree merges.

A delete_min can be performed by first finding the binomial tree with the smallest root. Let this

tree be B

k

, and let the original priority queue be H. We remove the binomial tree B

k

 from the

forest of trees in H, forming the new binomial queue H'. We also remove the root of B

k

, creating

binomial trees B

0

, B

1

, . . . , B

k

- l, which collectively form priority queue H''. We finish the

operation by merging H' and H''.

As an example, suppose we perform a delete_min on H

3

, which is shown again in

Figure 6.46. The

minimum root is 12, so we obtain the two priority queues H' and H'' in Figure 6.47 and Figure

6.48. The binomial queue that results from merging H' and H'' is the final answer and is shown in

Figure 6.49.

For the analysis, note first that the delete_min operation breaks the original binomial queue

into two. It takes O (log n) time to find the tree containing the minimum element and to create

the queues H' and H''. Merging these two queues takes O (log n) time, so the entire delete_min

operation takes O (log n) time.

6.8.3. Implementation of Binomial Queues

The delete_min operation requires the ability to find all the subtrees of the root quickly, so

the standard representation of general trees is required: The children of each node are kept in a

linked list, and each node has a pointer to its first child (if any). This operation also

requires that the children be ordered by the size of their subtrees, in essentially the same way

as we have been drawing them. The reason for this is that when a delete_min is performed, the

children will form the binomial queue H''.

页码，31/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

We also need to make sure that it is easy to merge two trees. Two binomial trees can be merged

only if they have the same size, so if this is to be done efficiently, the size of the tree must

be stored in the root. Also, when two trees are merged, one of the trees is added as a child to

the other. Since this new tree will be the last child (as it will be the largest subtree), we

must be able to keep track of the last child of each node efficiently. Only then will we be able

to merge two binomial trees, and thus two binomial queues, efficiently. One way to do this is to

use a circular doubly linked list. In this list, the left sibling of the first child will be the

last child. The right sibling of the last child could be defined as the first child, but it might

be easier just to define it as . This makes it easy to test whether the child we are pointing to

is the last.

To summarize, then, each node in a binomial tree will contain the data, first child, left and

right sibling, and the number of children (which we will call the rank). Since a binomial queue

is just a list of trees, we can use a pointer to the smallest tree as the reference to the data

structure.

Figure 6.51 shows how the binomial queue in Figure 6.50 is represented. Figure 6.52 shows the

type declarations for a node in the binomial tree.

In order to merge two binomial queues, we need a routine to merge two binomial trees of the same

size. Figure 6.53 shows how the pointers change when two binomial trees are merged. First, the

root of the new tree gains a child, so we must update its rank. We then need to change several

pointers in order to splice one tree into the list of children of the root of the other tree. The

code to do this is simple and shown in Figure 6.54.

Figure 6.39 After 1 is inserted

Figure 6.40 After 2 is inserted

Figure 6.41 After 3 is inserted

页码，32/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.42 After 4 is inserted

Figure 6.43 After 5 is inserted

Figure 6.44 After 6 is inserted

Figure 6.45 After 7 is inserted

Figure 6.46 Binomial queue H

3

页码，33/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 6.47 Binomial queue H', containing all the binomial trees in H

3

 except B3

Figure 6.48 Binomial queue H'': B

3

 with 12 removed

Figure 6.49 Result of delete_min(H

3

)

Figure 6.50 Binomial queue H

3

 drawn as a forest

Figure 6.51 Representation of binomial queue H

3

页码，34/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

typedef struct tree_node *tree_ptr;

struct tree_node

{

element_type element;

tree_ptr l_sib;

tree_ptr r_sib;

tree_ptr f_child;

unsigned int rank;

};

typedef tree_ptr PRIORITY_QUEUE;

Figure 6.52 Binomial queue type declarations

Figure 6.53 Merging two binomial trees

The routine to merge two binomial queues is relatively simple. We use recursion to keep the code

size small; a nonrecursive procedure will give better performance, and is left as

Exercise 6.32.

We assume the macro extract(T, H), which removes the first tree from the priority queue H,

placing the tree in T. Suppose the smallest binomial tree is contained in H

1

, but not in H

2

.

Then, to merge H

1

, we remove the first tree in H

1

and add to it the result of merging the rest of

H

1

 with H

2

. If the smallest tree is contained in both H

l

 and H

2

, then we remove both trees and

merge them, obtaining a one-tree binomial queue H'. We then merge the remainder of Hl and H2,

and merge this result with H'. This strategy is implemented in Figure 6.55. The other routines

are straightforward implementations, which we leave as exercises.

/* Merge two equal-sized binomial trees */

tree_ptr

merge_tree(tree_ptr T1, tree_ptr T2)

{

页码，35/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

if(T1->element > T2->element)

return merge_tree(T2, T1);

if(T1->rank++ == 0)

T1->f_child = T2;

else

{

T2->l_sib = T1->f_child->l_sib;

T2->l_sib->r_sib = T2;

T1->f_child->l_sib = T2;

}

return T1;

}

Figure 6.54 Routine to merge two equal-sized binomial trees

We can extend binomial queues to support some of the nonstandard operations that binary heaps

allow, such as decrease_key and delete, when the position of the affected element is known. A

decrease_key is a percolate up, which can be performed in O(log n) time if we add a field to each

node pointing to its parent. An arbitrary delete can be performed by a combination of

decrease_key and delete_min in O(log n) time.

Summary

In this chapter we have seen various implementations and uses of the priority queue ADT. The
standard binary heap implementation is elegant because of its simplicity and speed. It requires

no pointers and only a constant amount of extra space, yet supports the priority queue operations

efficiently.

We considered the additional merge operation and developed three implementations, each of which

is unique in its own way. The leftist heap is a wonderful example of the power of recursion. The

skew heap represents a remarkable data structure because of the lack of balance criteria. Its

analysis, which we will perform in

Chapter 11, is interesting in its own right. The binomial

queue shows how a simple idea can be used to achieve a good time bound.

We have also seen several uses of priority queues, ranging from operating systems scheduling to

simulation. We will see their use again in Chapters 7, 9, 10.

PRIORITY_QUEUE

merge(PRIORITY_QUEUE H1, PRIORITY_QUEUE H2)

{

PRIORITY_QUEUE H3;

页码，36/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

tree_ptr T1, T2, T3;

/*1*/ if(H1 == NULL)

/*2*/ return H2;

/*3*/ if(H2 == NULL)

/*4*/ return H1;

/*5*/ if(H1->rank < H2->rank)

{

/*6*/ T1 = extract(H1); /* extract is a macro */

/*7*/ H3 = merge(H1, H2);

/*8*/ T1->l_sib = H3->l_sib;

/*9*/ H3->l_sib->r_sib = NULL;

/*10*/ T1->r_sib = H3; H3->l_sib = T1;

/*11*/ return T1;

{

/*12*/ if(H2->rank < H1->rank)

/*13*/ return merge(H2, H1);

/* Otherwise, first two trees have same rank */

/*14*/ T1 = extract(H1); T2 = extract(H2);

/*15*/ H3 = merge(H1, H2);

/*16*/ T3 = merge_tree(T1, T2);

/*17*/ return merge(T3, H3);

}

Figure 6.55 Routine to merge two priority queues

Exercises

6.1 Suppose that we replace the delete_min function with find_min. Can both insert and find_min

be implemented in constant time?

6.2 a. Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13, and 2, one at

a time, into an initially empty binary heap.

页码，37/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

b. Show the result of using the linear-time algorithm to build a binary heap using the same

input.

6.3 Show the result of performing three delete_min operations in the heap of the previous

exercise.

6.4 Write the routines to do a percolate up and a percolate down in a binary heap.

6.5 Write and test a program that performs the operations insert, delete_min, build_heap,

find_min, decrease_key, delete, and increase_key in a binary heap.

6.6 How many nodes are in the large heap in Figure 6.13?

6.7 a. Prove that for binary heaps, build_heap does at most 2n - 2 comparisons between elements.

b. Show that a heap of 8 elements can be constructed in 8 comparisons between heap elements.

**c. Give an algorithm to build a binary heap in 13/8n + O(log n) element comparisons.

** 6.8 Show that the expected depth of the kth smallest element in a large complete heap (you may

assume n = 2k - 1) is bounded by log k.

6.9 * a. Give an algorithm to find all nodes less than some value, x, in a binary heap. Your

algorithm should run in O(K), where K is the number of nodes output.

b. Does your algorithm extend to any of the other heap structures discussed in this chapter?

**6.10 Propose an algorithm to insert m nodes into a binary heap on n elements in O(m + log n)

time. Prove your time bound.

6.11 Write a program to take n elements and do the following:

a. Insert them into a heap one by one,

b. Build a heap in linear time.

页码，38/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Compare the running time of both algorithms for sorted, reverse-ordered, and random inputs.

6.12 Each delete_min operation uses 2 log n comparisons in the worst case.

*a. Propose a scheme so that the delete_min operation uses only log n + log log n + O(1)

comparisons between elements. This need not imply less data movement.

**b. Extend your scheme in part (a) so that only log n + log log log n + O(1) comparisons are

performed.

**c. How far can you take this idea?

d. Do the savings in comparisons compensate for the increased complexity of your algorithm?

6.13 If a d-heap is stored as an array, for an entry located in position i, where are the parents

and children?

6.14 Suppose we need to perform m percolate_ups and n delete_mins on a d-heap that initially has

n elements.

a. What is the total running time of all operations in terms of m, n, and d?

b. If d = 2, what is the running time of all heap operations?

c. If d = (n), what is the total running time?

*d. What choice of d minimizes the total running time?

6.15 A min-max heap is a data structure that supports both delete_min and delete_max in O(log n)

per operation. The structure is identical to a binary heap, but the heap order property is that

for any node, X, at even depth, the key stored at X is smaller than the parent but larger than

the grandparent (where this makes sense), and for any node X at odd depth, the key stored at X is

larger than the parent but smaller than the grandparent. See Figure 6.56.

a. How do we find the minimum and maximum elements?

*b. Give an algorithm to insert a new node into the min-max heap.

*c. Give an algorithm to perform delete_min and delete_max.

*d. Can you build a min-max heap in linear time?

*e. Suppose we would like to support delete_min, delete_max, and merge. Propose a data structure

to support all operations in O(log n) time.

页码，39/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

6.16 Merge the two leftist heaps in Figure 6.57.

6.17 Show the result of inserting keys 1 to 15 in order into an initially empty leftist heap.

6.18 Prove or disprove: A perfectly balanced tree forms if keys 1 to 2

k

 - 1 are inserted in order

into an initially empty leftist heap.

6.19 Give an example of input which generates the best leftist heap.

Figure 6.56 Min-max heap

Figure 6.57

页码，40/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

6.20 a. Can leftist heaps efficiently support decrease_key?

b. What changes, if any (if possible), are required to do this?

6.21 One way to delete nodes from a known position in a leftist heap is to use a lazy strategy.

To delete a node, merely mark it deleted. When a find_min or delete_min is performed, there is a

potential problem if the root is marked deleted, since then the node has to be actually deleted

and the real minimum needs to be found, which may involve deleting other marked nodes. In this

strategy, deletes cost one unit, but the cost of a delete_min or find_min depends on the number

of nodes that are marked deleted. Suppose that after a delete_min or find_min there are k fewer

marked nodes than before the operation.

*a. Show how to perform the delete_min in O(k log n) time.

**b. Propose an implementation, with an analysis to show that the time to perform the delete_min

is O(k log(2n/k)).

6.22 We can perform build_heap in linear time for leftist heaps by considering each element as a

one-node leftist heap, placing all these heaps on a queue, and performing the following step:

Until only one heap is on the queue, dequeue two heaps, merge them, and enqueue the result.

a. Prove that this algorithm is O(n) in the worst case.

b. Why might this algorithm be preferable to the algorithm described in the text?

6.23 Merge the two skew heaps in Figure 6.57.

6.24 Show the result of inserting keys 1 to 15 in order into a skew heap.

6.25 Prove or disprove: A perfectly balanced tree forms if the keys 1 to 2

k

 - 1 are inserted in

order into an initially empty skew heap.

6.26 A skew heap of n elements can be built using the standard binary heap algorithm. Can we use

the same merging strategy described in Exercise 6.22 for skew heaps to get an O(n) running time?

6.27 Prove that a binomial tree B

k

 has binomial trees B

0

, B

1

, . . . , B

k-1

 as children of the

页码，41/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

root.

6.28 Prove that a binomial tree of height k has nodes at depth d.

6.29 Merge the two binomial queues in Figure 6.58.

6.30 a. Show that n inserts into an initially empty binomial queue takes O(n) time in the worst

case.

b. Give an algorithm to build a binomial queue of n elements, using at most n - 1 comparisons

between elements.

*6.31 Propose an algorithm to insert m nodes into a binomial queue of n elements in O(m + log n)

worst-case time. Prove your bound.

6.32 Write nonrecursive routines to perform merge, insert, and delete_min using binomial queues.

**6.33 Suppose we extend binomial queues to allow at most two trees of the same height per

structure. Can we obtain O(1) worst-case time for insertion while retaining O(log n) for the

other operations?

Figure 6.58

页码，42/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

6.34 Suppose you have a number of boxes, each of which can hold total weight C and items i

1

, i

2

,

i

3

, . . . , i

n

, which weigh w

1

, w

2

, w

3

, . . . , w

n

. The object is to pack all the items without

placing more weight in any box than its capacity and using as few boxes as possible. For

instance, if C = 5, and the items have weights 2, 2, 3, 3, then we can solve the problem with two

boxes. In general, this problem is very hard and no efficient solution is known. Write programs

to implement efficiently the following approximation strategies:

*a. Place the weight in the first box for which it fits (creating a new box if there is no box

with enough room). (This strategy and all that follow would give three boxes, which is

suboptimal.)

b. Place the weight in the box with the most room for it.

*c. Place the weight in the most filled box that can accept it without overflowing.

**d. Are any of these strategies enhanced by presorting the items by weight?

6.35 Suppose we want to add the decrease_all_keys() operation to the heap repertoire. The

result of this operation is that all keys in the heap have their value decreased by an amount

. For the heap implementation of your choice, explain the necessary modifications so that all

other operations retain their running times and decrease_all_keys runs in O(1).

6.36 Which of the two selection algorithms has the better time bound?

References

The binary heap was first described in

[21]. The linear-time algorithm for its construction is

from [9].

The first description of d -heaps was in [14]. Leftist heaps were invented by Crane [7] and

described in Knuth [15]. Skew heaps were developed by Sleator and Tarjan [17]. Binomial queues

were invented by Vuillemin [20]; Brown provided a detailed analysis and empirical study showing

that they perform well in practice [2], if carefully implemented.

Exercise 6.7 (b-c) is taken from [12]. A method for constructing binary heaps that uses about

1.52n comparisons on average is described in [16]. Lazy deletion in leftist heaps (Exercise 6.21)

is from [6]. A solution to Exercise 6.33 can be found in [5].

Min-max heaps (Exercise 6.15) were originally described in [1]. More efficient implementation of

the operations is given in [13] and [18]. An alternate representation for double ended priority

queues is the deap. Details can be found in [3] and [4].

A theoretically interesting priority queue representation is the Fibonacci heap [11], which we

will describe in Chapter 11. The Fibonacci heap allows all operations to be performed in O(1)

amortized time, except for deletions, which are O(log n). Relaxed heaps [8] achieve identical

bounds in the worst case. Another interesting implementation is the pairing heap [10]. Finally, a

页码，43/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

priority queue that works when the data consists of small integers is described in [19].

1. M. D. Atkinson, J. R. Sack, N. Santoro, and T. Strothotte, "Min-Max Heaps and Generalized

Priority Queues," Communications of the ACM 29 (1986), 996-1000.

2. M. R. Brown, "Implementation and Analysis of Binomial Queue Algorithms," SIAM Journal on

Computing 7 (1978), 298-319.

3. S. Carlsson, "The Deap--A Double-ended Heap to Implement Double-ended Priority Queues,"

Information Processing Letters 26 (1987), 33-36.

4. S. Carlsson, J. Chen, and T. Strothotte, "A Note on the Construction of the Data Structure

'Deap'," Information Processing Letters 31 (1989), 315-317.

5. S. Carlsson, J. I. Munro, and P. V. Poblete, "An Implicit Binomial Queue with Constant

Insertion Time," Proceedings of First Scandinavian Workshop on Algorithm Theory, 1988, 1-13.

6. D. Cheriton and R. E. Tarjan, "Finding Minimum Spanning Trees," SIAM Journal on Computing 5

(1976), 724-742.

7. C. A. Crane, "Linear Lists and Priority Queues as Balanced Binary Trees," Technical Report

STAN-CS-72-259, Computer Science Department, Stanford University, Stanford, CA, 1972.

8. J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan, "Relaxed Heaps: An Alternative to

Fibonacci Heaps with Applications to Parallel Computation," Communications of the ACM 31 (1988),

1343-1354.

9. R. W. Floyd, "Algorithm 245: Treesort 3:", Communications of the ACM 7 (1964), 701.

10. M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, "The Pairing Heap: A New Form

of Self-adjusting Heap," Algorithmica 1 (1986), 111-129.

页码，44/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

11. M. L. Fredman and R. E. Tarjan, "Fibonacci Heaps and Their Uses in Improved Network

Optimization Algorithms," Journal of the ACM 34 (1987), 596-615.

12. G. H. Gonnet and J. I. Munro, "Heaps on Heaps," SIAM Journal on Computing 15 (1986), 964-971.

13. A. Hasham and J. R. Sack, "Bounds for Min-max Heaps," BIT 27 (1987), 315-323.

14. D. B. Johnson, "Priority Queues with Update and Finding Minimum Spanning Trees," Information

Processing Letters 4 (1975), 53-57.

15. D. E. Knuth, The Art of Computer Programming, Vol 3: Sorting and Searching, second printing,

Addison-Wesley, Reading, MA, 1975.

16. C. J. H. McDiarmid and B. A. Reed, "Building Heaps Fast," Journal of Algorithms 10 (1989),

352-365.

17. D. D. Sleator and R. E. Tarjan, "Self-adjusting Heaps," SIAM Journal on Computing 15 (1986),

52-69.

18. T. Strothotte, P. Eriksson, and S. Vallner, "A Note on Constructing Min-max Heaps," BIT 29

(1989), 251-256.

19. P. van Emde Boas, R. Kaas, E. Zijlstra, "Design and Implementation of an Efficient Priority

Queue," Mathematical Systems Theory 10 (1977), 99-127.

20. J. Vuillemin, "A Data Structure for Manipulating Priority Queues," Communications of the ACM

21 (1978), 309-314.

页码，45/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

21. J. W. J. Williams, "Algorithm 232: Heapsort," Communications of the ACM 7 (1964), 347-348.

Go to

Chapter 7 Return to Table of Contents

页码，46/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

